East Central Iowa Transportation Safety Plan

A PLAN FOR 58 CITIES THE DUBUQUE IOWA-ILLINOIS METROPOLITAN AREA AND THE COUNTIES OF CLINTON, DELAWARE, DUBUQUE, AND JACKSON

Plan Outline - Main Plan Document

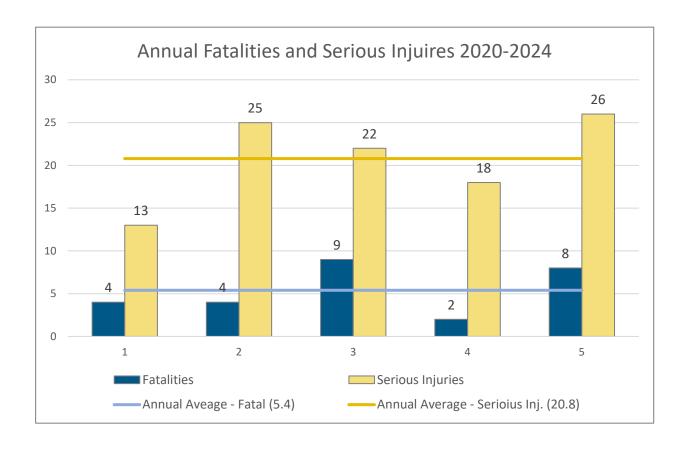
- 1) Leadership Commitment
- 2) Introduction
- 3) Planning Process
- 4) Goal Setting
- 5) Engagement
- 6) Key Issues

- 6) Analysis
 - a) Areawide Analysis
 - b) City Segment Analysis Summary
 - c) City Intersection Analysis Summary
 - d) Vulnerable Road User Analysis Summary
 - e) Road Reconfiguration Analysis Summary
- 7) Implementation
 - a) Implementation Strategies
 - b) Countermeasures
 - c) Funding Sources

Leadership Commitment and Goal Setting

Required element for SS4A Comprehensive Safety Action Plans

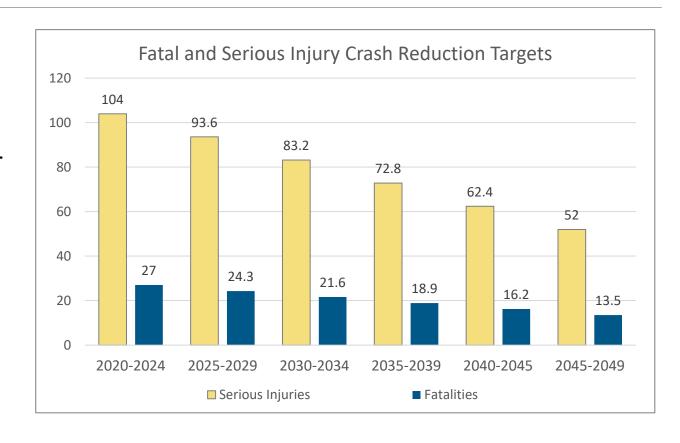
The plan needs to have BOTH of the following:


- A high-ranking official and/or governing body in the jurisdiction publicly committed to an eventual goal of zero roadway fatalities and serious injuries; and
- The commitment includes either setting a target date to reach zero OR setting one
 or more targets to achieve a reduction in roadway fatalities and serious injuries by a
 specific date.

For our plan, the DMATS and RPA Board chairpersons will be the "high ranking officials."

Goal Setting

The goal of the plan is a 50% reduction in roadway fatalities and serious injuries by 2050.


Baseline period 2020-2024

Fatal and Serious Injury Crash Reduction Targets

50% Reduction

- Annual Average
 - Serious Injures 20.8 > 10.4
 - Fatalities 5.4 > 2.7
- Five Year Period
 - Serious Injuries 104 > 52
 - Fatalities 27 > 13.5

Key Issues – Key Emphasis Areas

- Identifying key issues ensures that efforts and resources are focused on the most critical safety issues.
- The plan will incorporate the Iowa DOT's 2024–2028 Strategic Highway Safety Plan (SHSP) Emphasis Areas to support the shared state and regional goal of eliminating roadway fatalities and serious injuries.

Safer People

- Bicyclists
- Distracted Driving
- Occupant Protection
- Older Drivers
- Pedestrians
- Impairment Involved
- Younger Drivers

Safer Roads

- Intersections
- Lane Departures
- Local Roads
- Roadside Collisions
- Winter Road Conditions
- Work Zones

Safer Vehicles

- Heavy Trucks
- Other Special Vehicles
- Motorcycles
- Trains

Safer Speeds

Speed-Related

Key Issues – Local Safety Priorities

The plan will also include locally identified emphasis areas developed through the planning process

- Excessive Speed
- Walking and Biking
- Reckless / Careless Driving
- Hidden High-Risk Areas
- Funding
- Public Transit and Taxi Service
- Arterial and Collector Roads and Intersections
- ATV and UTV Safety

Implementation Strategies

- 1. High-Injury Network Safety Projects
- 2. Systemic Safety Treatments
- 3. Policy and Program Implementation

Countermeasures

- Countermeasures are strategies that can be implemented to reduce risks from roadway hazards.
- The plan will list a wide range of countermeasures designed to address a wide range of safety issues
- Locations and roadway segments identified through the crash analysis will be matched with appropriate countermeasures based on the nature of crash history at each location.
- Countermeasures can also be applied systemically across the region to address dispersed crash patterns with proactive solutions.
- **Example**: Install Pennants or Flashing Beacons
- This strategy, which can be used in conjunction with warning signs or stop signs, involves the
 installation of metal pennants or flashing beacons to increase conspicuity and driver awareness or the
 approaching condition. A general cost range for metal pennants is \$50 to \$100 for each pennant and
 mounting hardware, while beacons are \$500 to \$1,700.

Plan Outline – Appendices

Appendix A – DMATS City Reports

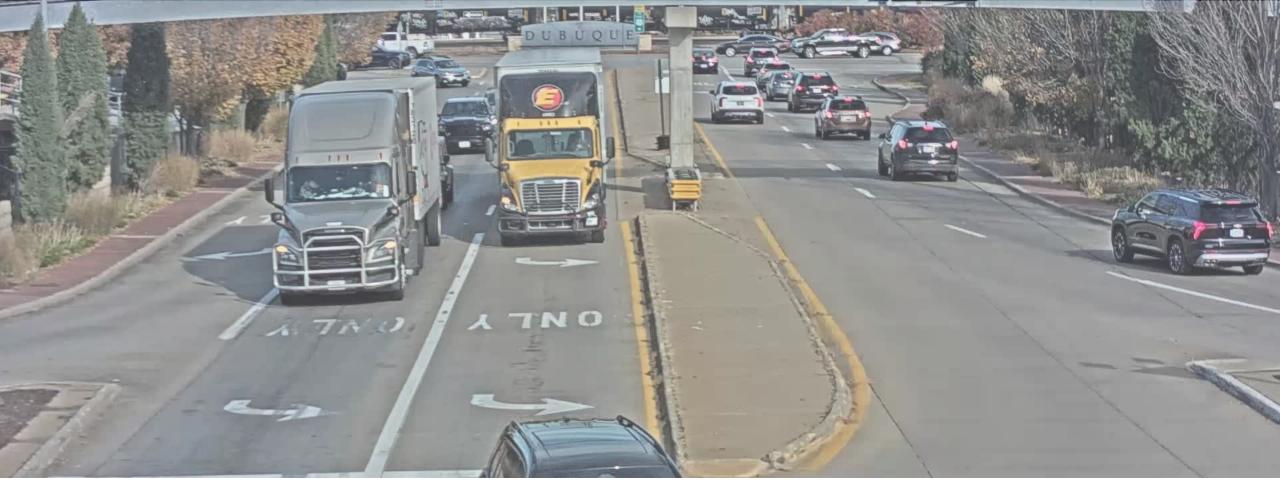
- 1) City Reports
 - a) City overview
 - b) Key Projects and Initiatives
 - c) Segment Site Plans
 - d) Intersection Site Plans
 - e) Vulnerable Road User Site Plans
 - f) Road Reconfiguration Plans

Appendix B - RPA Cities

- 1) City Reports
 - a) City overview
 - b) Key Projects and Initiatives
 - c) Segment Site Plans
 - d) Intersection Site Plans
 - e) Vulnerable Road User Site Plans
 - f) Road Reconfiguration Plans

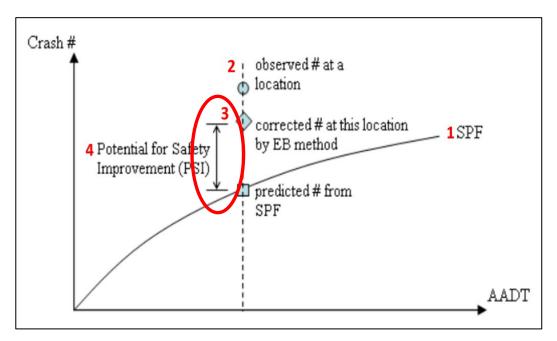
Appendix C - Community Engagement Results

- 1) General Survey Results
- 2) Map Survey Results
- 3) Public Input Materials
- 4) Public Input Events
- 5) Comment Follow Up


Appendix D – Resolutions

- 1) DMATS Resolution
- 2) RPA Resolution

Appendix E – Iowa and Illinois KABCO Definitions



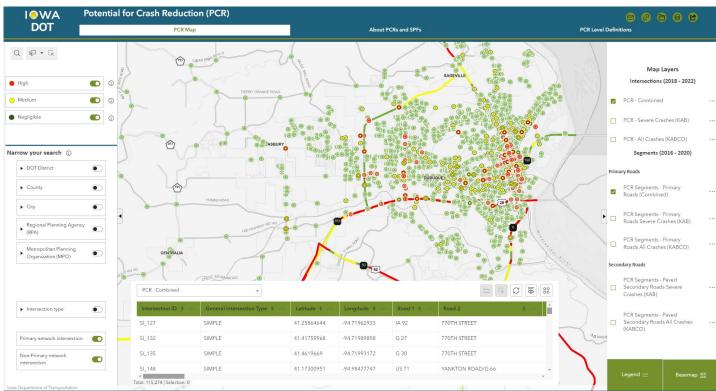
Safety Analysis

Network Screening: Potential for Crash Reduction (PCR)

Potential for Crash Reduction

Paved Intersections: 2018 - 2022

Paved Road Segments: 2019 – 2023


Crash Severities

- Fatal, Major Injury, Minor Injury (KAB)
- · All (KABCO)

Difference between:
Predicted crashes and expected crashes

Based on:

- Observed crashes
- Similar locations
- Traffic

Network Screening: PCR

Considered 57 cities.

High Injury Network (KAB Annual PCR)

Intersections

- High: ≥ 0.25
- Medium: ≥ 0.05 and < 0.25

Segments

· ≥ 0.5

High Crash Network (KABCO Annual PCR)

Intersections*

- High: ≥ 1
- Medium: ≥ 0.2 and < 1

Segments

· ≥ 1

^{*} Dubuque: >5 KABCO crashes, >1 KAB (5 years)

Total: 115,274 | Selection: 1

Esri, USDA FSA I lowa Department of Transportation

Site Evaluation

Loras Blvd and Alta Vista St

- High Crash Network
 - KABCO PCR = 1.47
- 15 crashes (2018-2022)
 - 3 KAB
 - 12 CO
- Predominant crash types
 - Rear-end
 - Broadside
 - Non collision

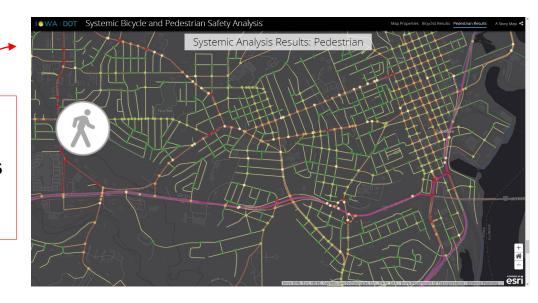
Site Evaluation

Observations

- No pedestrian warning signs
- Driver attentiveness may be an issue
- Rear end crashes suggest unexpected stopping/slowed vehicles
- Steep upgrade/downgrade on Loras

Countermeasures

- Install ped. signage and crosswalks
- Pennants or beacons on Stop signs
- Provide pvt. marking messages
- Install RRFB
- Convert to All Way Stop


Network Screening: VRU

Network Screening: VRU

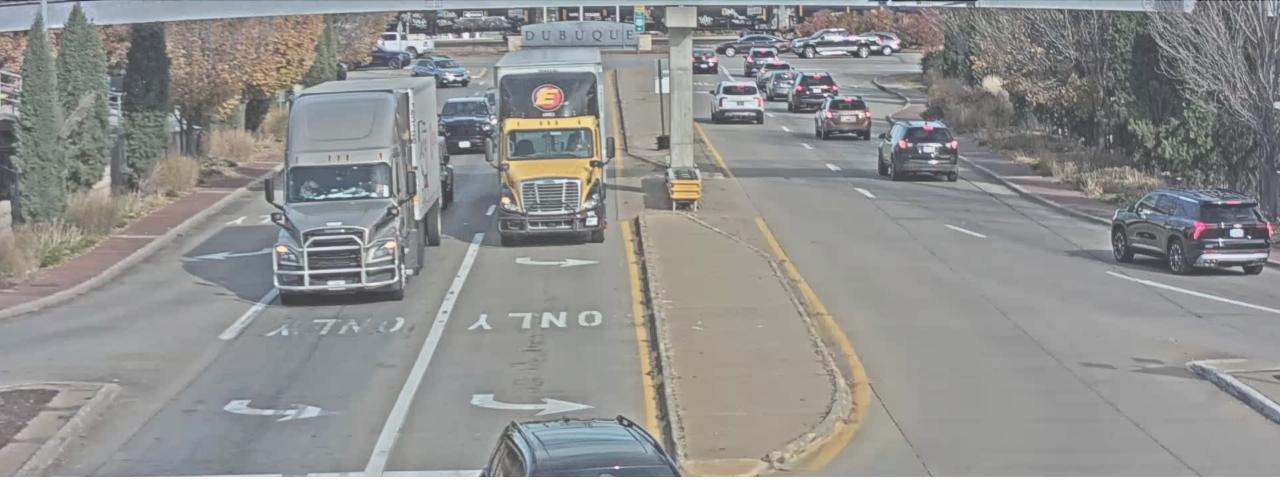
Considered 57 cities.

Criteria

- Fatal crash
- High urban intersection composite risk pedestrians
- High urban intersection composite risk bicyclists
- High urban segment composite risk pedestrians
- High urban segment composite risk bicyclists
- Part of crash grouping (ten-year analysis period)
- Part of crash grouping (five-year analysis period)
- Proximity to public school 0.25 miles
- Proximity to public school 0.5 miles
- Proximity to private school 0.25 miles
- Proximity to private school 0.5 miles
- Agency feedback
- Other observations

Site Evaluation

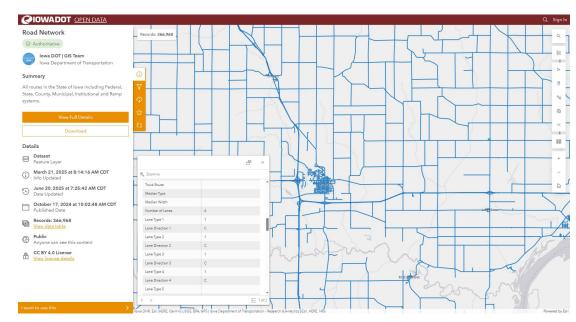
Crash History


- Frequency, severity
- VRU types, ages
- **Spatial proximity**
- **Characteristics**
- Contributing circumstances · Visual obstructions

Location Characteristics

- Site, corridor
- Land use
- Presence/absence of safety **features**

Possible Countermeasures


Network Screening: Possible Road Reconfiguration

Network Screening: Possible Road Reconfiguration, $2\rightarrow3$ & $4\rightarrow3$

Considered 57 cities.

Criteria

- Existing road cross section
- Traffic volumes

Site Evaluation

- Continuity, length
- Land use
- Parking

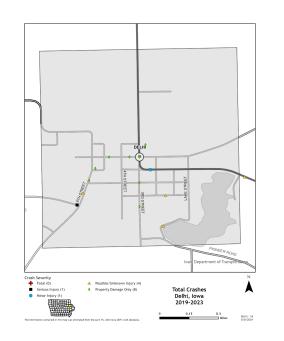
- Surface width
- Access density
- Crash history

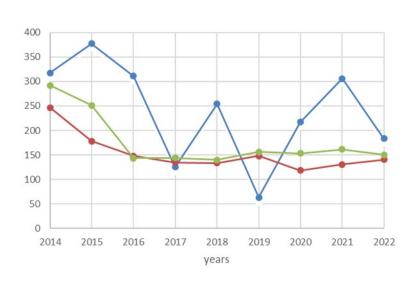
Agency Review

Agency Review

Considered 46 cities.

Crash History


- Frequency
- Severity
- Locations
- Trends, comparisons


Vehicle Miles Traveled

- Trends
- Regional, statewide comparisons

Selected Route Review

- VRU facilities
- Speed limit
- Traffic (total, truck)
- Parking
- Surface width

Zach Hans David Veneziano